21 research outputs found

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals

    Get PDF
    Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature. 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021-001. The statements made herein are solely the responsibility of the authors.Scopu

    an individual participant data meta-analysis

    Get PDF
    Background The impact of neuraminidase inhibitors (NAIs) on influenza-related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. Methods A worldwide meta- analysis of individual participant data from 20 634 hospitalised patients with laboratory-confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. Results Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. Conclusions Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support

    Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09‐related pneumonia: an individual participant data meta‐analysis

    Get PDF
    BACKGROUND: The impact of neuraminidase inhibitors (NAIs) on influenza‐related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. METHODS: A worldwide meta‐analysis of individual participant data from 20 634 hospitalised patients with laboratory‐confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. RESULTS: Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. CONCLUSIONS: Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support

    Neuraminidase Inhibitors and Hospital Length of Stay: A Meta-analysis of Individual Participant Data to Determine Treatment Effectiveness Among Patients Hospitalized With Nonfatal 2009 Pandemic Influenza A(H1N1) Virus Infection

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: [email protected]. BACKGROUND: The effect of neuraminidase inhibitor (NAI) treatment on length of stay (LoS) in patients hospitalized with influenza is unclear. METHODS: We conducted a one-stage individual participant data (IPD) meta-analysis exploring the association between NAI treatment and LoS in patients hospitalized with 2009 influenza A(H1N1) virus (A[H1N1]pdm09) infection. Using mixed-effects negative binomial regression and adjusting for the propensity to receive NAI, antibiotic, and corticosteroid treatment, we calculated incidence rate ratios (IRRs) and 95% confidence intervals (CIs). Patients with a LoS o

    Adaptive beamforming of linear array antenna system with provision of sidelobe cancellation

    No full text

    Electric field controlled cohesive symmetric hook-C shape inspired metamaterial for S-band application

    No full text
    In this paper, a split ring resonator (SRR) bounded new cohesive symmetric hook-C shaped unit cell is developed. The metamaterial has 4   × 4-unit cell array, which is applicable for s-band application for its high bandwidth (S21 < -10 dB) of 0.6 GHz and high effective medium ratio (EMR) 12.78. Commercially available electromagnetic simulator CST (Computer simulation technology) microwave studio has been utilized at 2.93 GHz resonance frequency in this investigation. The electric field of this design is also observed by modifying the design structure that shows effective results. The new developed hook-C shaped metamaterial is fabricated and measured to validate the simulation results, which is eligible for high performance in long distance communications. The proposed metamaterial is highly recommended to apply in Airport Surveillance Radar (ASR) system for its highly effective medium ratio and size miniaturization

    Electromagnetic radiation reduction using novel metamaterial for cellular applications

    No full text
    Excessive exposure to radiation has an adverse impact on human health, as an increase in body temperature may damage human organs or tissues, including the brain, eyes, and skin. Hence, this study assessed the effect of overexposure of radiation on the human head by analysing specific absorption rate (SAR) and reduction of SAR through the use of novel metamaterial (MTM). The SAR reduction was performed for GSM 900 MHz and 1800 MHz bands. A high-frequency electromagnetic simulator was employed throughout this study. The SAR investigation was performed on the head model for three categories of usage, namely voice calling, messaging, and video calling. This study looked into the impact on SAR of various free space distances between mobile phone and head model. A novel electric field driven LC (ELC) resonator-based MTM was used to reduce SAR. Based on the properties of the tissue, the rate of tissue absorption escalated with an increase in radiated power, especially when the distance between head and mobile phone decreased. The study outcomes signified that MTM could decrease a significant amount of SAR. This is beneficial to protect the human body from harmful radiation, wherein the distance from the device in biological effect should be maintained
    corecore